Sample Paper 2014: Paper 1

Question 2 (25 marks)

Question 2 (a) (i)

Steps to Proof by Induction

1. Prove result is true for some starting value of $n \in \mathbb{N}$.
2. Assume result is true for $n=k$.
3. Prove result is true for $n=(k+1)$.

Required to Prove: $1+2+3+\ldots \ldots \ldots \ldots+n=\frac{n(n+1)}{2}$
STEP 1: Prove the result is true for $n=1$.
$1=\frac{1(1+1)}{2}$
$1=\frac{1(2)}{2}$
$1=1 \quad$ [Therefore, true for $n=1$.
STEP 2: Assume it is true for $n=k$.

$$
1+2+3+\ldots \ldots \ldots \ldots+k=\frac{k(k+1)}{2}
$$

STEP 3: Prove it is true for $n=k+1$.
Prove $\underline{(1+2+3+\ldots \ldots \ldots \ldots+k)}+(k+1)=\frac{(k+1)(k+2)}{2}$

Use the result in Step 2 to prove Step 3.

$$
\begin{aligned}
& (1+2+3+\ldots \ldots \ldots \ldots+k)+(k+1) \\
= & \frac{k(k+1)}{2}+(k+1) \\
= & (k+1)\left[\frac{k}{2}+1\right] \\
= & (k+1)\left[\frac{k+2}{2}\right] \\
= & \frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Therefore, assuming true for $n=k$ means it is true for $n=k+1$. So true for $n=1$ and true for $n=k$ means it is true for $n=k+1$. This implies it is true for all $n \in \mathbb{N}$.

Question 2 (a) (ii)

$S_{n}=\frac{n(n+1)}{2}$
$S_{100}-S_{50}=\frac{100(101)}{2}-\frac{50(51)}{2}=3775 \leftarrow$ This the the sum of the numbers between 51 and 100.

Question 2 (b)
$\log _{c} \sqrt{x}+\log _{c}(c x)$
$=\log _{c} x^{\frac{1}{2}}+\log _{c}(c x)$
$=\frac{1}{2} \log _{c} x+\log _{c} c+\log _{c} x$
$=\frac{3}{2} \log _{c} x+\log _{c} c$
$=\frac{3}{2} p+1$

Formulae and Tables Book Indices and logs [page 21]

$$
\begin{aligned}
& \log _{a}(x y)=\log _{a} x+\log _{a} y \\
& \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
& \log _{a}\left(x^{q}\right)=q \log _{a} x \\
& \log _{a} 1=0 \\
& \log _{a}\left(\frac{1}{x}\right)=-\log _{a} x
\end{aligned}
$$

